Авторизация

Поиск

«Чтение свойств функции по графику функции»


Конденко
Любовь Николаевна

Учитель высшей квалификационной категории

Средней школы № 1 г. Елабуга

ТЕМА: «ЧТЕНИЕ СВОЙСТВ ФУНКЦИИ ПО ГРАФИКУ ФУНКЦИИ»

“График – это говорящая линия,

которая может о многом рассказать”

М.Б. Балк

Цели:

  • Образовательные

Продолжить формирование у учащихся понятия, что функция- математическая модель, позволяющая описывать изучать разнообразные зависимости между реальными величинами. Обобщить и систематизировать систему функциональных понятий (функция, значение функции, график, аргумент, область определения и область значений функции, возрастание, убывание, монотонность, сохранение знака). Формирование свободного чтения графиков, формирование умений отражать свойства функций на графике.

  • Развивающие

Развитие всех познавательных процессов, в частности функционального стиля мышления. Развитие графической культуры.

  • Воспитательные

Вырабатывать внимание, самостоятельность при работе на уроке. Воспитывать гордость за учёных, инженеров, конструкторов, создавших теорию графиков, применивших теорию к практической деятельности .Осуществлять профессиональную ориентацию учащихся.

1.Актуализация знаний

 

2. Формирование умений , навыков.

Функция – одно из основных математических общенаучных понятий, зависимость между переменными величинами. Математика рассматривает абстрактные переменные величины, изучает различные законы их взаимосвязи, не углубляясь в природу задачи. Например, в соотношении у = х2 геодезист или геометр увидит зависимость площади квадрата от его стороны, а физик, авиаконструктор или кораблестроитель может усмотреть в нем зависимость силы у сопротивления воздуха или воды от скорости х движения. Математика же изучает эту зависимость в отвлеченном виде, и она устанавливает, например, что увеличение х в 2 раза приведет к увеличению у в 4 раза, и это заключение может применяться в любой конкретной ситуации. В школьном курсе изучается немало функций.

Понятие функции уходит своими корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их предметы взаимосвязаны. Они еще не умели считать , но уже знали, что чем больше оленей удастся убить на охоте, тем дольше племя не будет голодать; чем сильнее натянуть тетиву лука, тем дальше полетит стрела; чем дольше горит костер, тем теплее в пещере.

Оно сыграло и поныне играет большую роль в познании реального мира .Идея функциональной зависимости присутствует уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами.

Функция является одним из основных понятий математики, в частности математического анализа, так как математические модели реальных ситуаций, изучаемые на протяжении всего курса алгебра, напрямую связаны с функциями.

В технике и физике часто пользуются именно графическим способом задания функции. Более того , по- мере развития математики все активнее проникает графический метод в самые различные области жизни человека. В частности, использование функциональных зависимостей и построение графиков широко применяется в экономике.

 

Задание № 1.

 

Само слово "функция" (от латинского functio — совершение, выполнение) впервые было употреблено немецким математиком Лейбницем в 1673 году в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону), в печати он его ввел с1694 года. Начиная с 1698 года, Лейбниц ввел также термины "переменная" и "константа". В восемнадцатом веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли), который в 1718 году определил функцию следующим образом: "функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных».

Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году ученик Бернулли Эйлер (во "Введении в анализ бесконечного"): "Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств". Так понимали функцию на протяжении почти всего восемнадцатого века.

Как видно из представленных определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики вызвали и дальнейшее обобщение понятия функции.

 

Графиком функции - называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты- соответствующим значениям функции.

График функции у =f(x)) строиться по точкам; чем больше точек вида (х;f(Х)) мы возьмем, тем более точное представление о графике получим. Если этих точек взять достаточно много, то и представление о графике сложится более полное. Именно в этом случае интуиция и подсказывает нам, что график нужно изобразить в виде сплошной линии.

Находясь на выставке картин, мы рассматриваем произведения искусств и обращаем внимание на то, сумел ли художник предать глубину, завершенность образного содержания. Картина является итогом длительных наблюдений и размышлений художника над жизнью. График функции это своего рода «портрет» функции. Чтобы научиться видеть и создавать такие картины необходимо знать основные математические функции и их свойства.

Свободное владение техникой построения графиков часто помогает решать многие задачи и порой является единственным средством их решения.

По графику можно прочитать многие свойства функции, можно решать неравенства и уравнения.

 

Читая ,график функции мы можем делать выводы об :

  • Области определения

  • Области значений

  • Нулях функции

  • Знакопостоянстве

  • Монотонности

  • Четности

  • Периодичности

  • Экстремумах

  • Ограниченности

  • Непрерывности


Выполним задание:

 

 

Множество всех значений независимой переменной, которые она может принимать называют областью определения функции.

Если известен график функции, то область ее определения найти нетрудно. Для этого достаточно спроецировать график на ось абсцисс. То числовое множество, геометрическая модель которого получится на оси абсцисс в результате указанного проецирования, и будет представлять собой область определения функции.

Ответ: (-9;9]


Выполним задание:

 

 

Множество всех значений зависимой переменной называют областью значений функции.

Если известен график функции, то область значений найти сравнительно нетрудно. Для этого достаточно спроецировать график на ось ординат. То числовое множество, геометрическая модель которого получится на оси ординат в результате указанного проецирования, и будет представлять собой область значений функции.

Ответ: [-4;6).



Выполним задание:

 

 

Функция у равное f(х) достигает на промежутке Х своего наибольшего значения, если существует такая точка х0 Î Х, что для всех х Î Х выполняется неравенство f(x) ≤ f(x0).

Из рисунка видим, что при х =-3, f(-3)=3 и это значение больше других значений функции.

Ответ: 3.

 

 

 


На практике удобнее пользоваться следующей формулировкой: функция возрастает, если большему значению аргумента соответствует большее значение функции. Или используя геометрическое истолкование понятий возрастания: двигаясь по графику возрастающей функции слева направо, мы как бы поднимаемся в гору.

Функция убывает, если большему значению аргумента соответствует меньшее значение функции. Или используя геометрическое истолкование понятий убывания: двигаясь по графику убывающей функции слева направо, мы как бы спускаемся в горы.

Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание или убывание называют исследованием функции на монотонность.


Выполним задание:

Найти промежутки монотонности функции у=f (x), заданной графиком.

Для определения промежутков монотонности будем использовать геометрическое истолкование : двигаясь по графику убывающей функции слева направо, мы как бы спускаемся в горы ,а двигаясь по графику возрастающей функции слева направо, мы как бы поднимаемся в гору.

 

Функция возрастает на промежутках [-5;-2) и на (-2; 1]

Функция у=f(x ) убывает на промежутках (-9;- 5] и на [1; 9].

На слайде 13 представлено задание из единого государственного экзамена: На каком из следующих рисунков изображен график функции, возрастающей на промежутке [-1;2].

 

Функцию y=f(x) называют периодической с периодом Т, Т≠0, если для любого х из области определения функции выполняются равенства f(x-T) = f(x)= =f(x+T).

Число Т, удовлетворяющее указанному условию, называется периодом функции y= f (x).

Если функция у=f(x) имеет период Т, то для построения графика функции нужно сначала построить часть графика на любом промежутке длины Т, а затем сдвинуть эту часть по оси Ох вправо и влево на Т, 2Т, 3Т и так далее.

Обычно стараются, если это возможно, выделить наименьший положительный период, его и называют основным периодом.

Задание 1.

Функция у =f (x), имеющая период Т = 4 задана графиком на промежутке [-1; 3]. Найдите значение этой функции при х = 10.

Задание2.

Функция у=f(x) определена на всей числовой прямой и является периодической с периодом 4. На рисунке изображен график этой функции при -3≤х≤1. Найдите значение выражения f(-6)∙f(-3)∙f(13).

Выполнить эти задания можно двумя способами.

1 способ:

Используя определение периодической функции достраиваем график функции с учетом периода вдоль оси абсцисс. Затем по графику находим значение функции для указанных значений аргументов.

2 способ:

Используя равенство f(x-T)= f(x)= f(x+T).

Решение можно посмотреть в презентации на слайдах 15, 16.

Определение четной и нечетной функции.

Функция y= f(x) называется четной, если область ее определения симметрична относительно нуля и для любого значения х, из области определения верно равенство f(-х)=f(x). График четной функции симметричен относительно оси ординат.

На слайде приведены примеры четных функций и примеры симметрии относительно прямой.

Функция y=f(x) называется нечетной, если ее область определения симметрична относительно нуля и для любого значения х из области определения верно равенство f(-х)=-f(x).

График нечетной функции симметричен относительно начала координат.

На слайде приведен пример симметрии относительно точки и на следующем слайде примеры графиков нечетных функций, изучаемых в школьном курсе алгебры. На графиках показана симметрия точек графика относительно начала координат. (Слайды 17-19).

На 20 слайде предложено задание:

Укажите график четной функции. (Решение можно посмотреть на слайде 20).

Определение промежутков знакопостоянства.

Решите неравенство f(x)≥0, если на рисунке изображен график функции у=f(x).

Решите неравенство f(x)≤0, если на рисунке изображен график функции у=f(x).

 

Другими словами нужно найти промежутки знакопостоянства функции у равное f(x).Функция принимает значение, равное нулю в тех точках, в которых график функции пересекает ось абсцисс. Функция принимает отрицательные значения на множестве тех значений аргумента, которым соответствуют части графика, расположенные ниже оси абсцисс, то есть f(x) меньше или равно нулю. Функция принимает положительные значения на множестве тех значений аргумента, которым соответствуют части графика, расположенные выше оси абсцисс, те есть f(x) больше или равно нуля.

f(x) ≥0 на промежутках хÎ (-9;-7,2]U(-1,8;5,8]

f(x)≤0 на промежутках хÎ [7,2;-1,8)U[5,8;9,2].


 

Школа № 1 города Елабуги © 2011 Все права защищены.

счетчик посещений

Счётчик Посещений